Auditory-feedback control of temporal call patterns in echolocating horseshoe bats.

نویسندگان

  • Michael Smotherman
  • Walter Metzner
چکیده

During flight, auditory feedback causes horseshoe bats to adjust the duration and repetition rate of their vocalizations in a context-dependent manner. As these bats approach a target, they make finely graded adjustments in call duration and interpulse interval (IPI), but their echolocation behavior is also characterized by abrupt transitions in overall temporal calling patterns. We investigated the relative contributions of two prominent acoustic cues, echo frequency and delay, toward the control of both graded and transitional changes in call duration and IPI. Echoes returning at frequencies above the emitted call frequency caused bats to switch from long single calls to pairs of short calls (doublets). Alternatively, increasing echo delay caused progressive increases in IPI but caused no accompanying changes in call duration. When frequency shifts were combined with changing echo delays, echo delay altered the IPIs occurring between doublets but not the IPI within a doublet. When the echo mimic was replaced by presentation of either an artificial constant-frequency (CF) stimulus or a frequency-modulated (FM) stimulus, each designed to mimic major components of the echo acoustic structure, we found that CF stimuli could trigger the switch to doublets, but changing CF delay had no influence on IPI, whereas the timing of an FM-sweep presentation had a strong effect on IPI. Because CF and FM sounds are known to be processed separately in the bat auditory system, the results indicate that at least two distinct neural feedback pathways may be used to control the temporal patterns of vocalization in echolocating horseshoe bats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Doppler-shift compensation behavior in horseshoe bats revisited: auditory feedback controls both a decrease and an increase in call frequency.

Among mammals, echolocation in bats illustrates the vital role of proper audio-vocal feedback control particularly well. Bats adjust the temporal, spectral and intensity parameters of their echolocation calls depending on the characteristics of the returning echo signal. The mechanism of audio-vocal integration in both mammals and birds is, however, still largely unknown. Here, we present behav...

متن کامل

A neural basis for auditory feedback control of vocal pitch.

Hearing one's own voice is essential for the production of correct vocalization patterns in many birds and mammals, including humans. Bats, for instance, adjust temporal, spectral, and intensity parameters of their echolocation calls by precisely monitoring the characteristics of the returning echo signals. However, neuronal substrates and mechanisms for auditory feedback control of vocalizatio...

متن کامل

An audio-vocal interface in echolocating horseshoe bats.

The control of vocalization depends significantly on auditory feedback in any species of mammals. Echolocating horseshoe bats, however, provide an excellent model system to study audio-vocal (AV) interactions. These bats can precisely control the frequency of their echolocation calls by monitoring the characteristics of the returning echo; they compensate for flight-induced Doppler shifts in th...

متن کامل

Different Auditory Feedback Control for Echolocation and Communication in Horseshoe Bats

Auditory feedback from the animal's own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled...

متن کامل

Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats.

The Lombard effect, an involuntary rise in call amplitude in response to masking ambient noise, represents one of the most efficient mechanisms to optimize signal-to-noise ratio. The Lombard effect occurs in birds and mammals, including humans, and is often associated with several other vocal changes, such as call frequency and duration. Most studies, however, have focused on noise-dependent ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2005